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Personal Introduction
Placeholder

• Joined UIC in Fall 2017 and the DICE group in Fall 2020
— DICE = Data, Information and Computing, Equitably

• Main thesis motivation: maximally utilizing feature-restricted models as side
information when training neural models
— We started off with noising as our baseline: an approach by Stanford ML to transfer

(structural) Kneser–Ney bigram knowledge into an LSTM RNN,
— We explained the principle behind noising, connected it to reverse knowledge

distillation (KD), and revealed them as suboptimal methods of utilizing such side
information,

— We developed a methodology to learn from restricted models, and showed that is
applicable beyond language models and is able to surpass noising and reverse KD.

2 / 62



Committee Members
Placeholder

• Professor Mesrob I. Ohannessian (Advisor and Committee Chair, UIC ECE)

• Professor Ahmet Enis Cetin (UIC ECE)

• Professor Shuo Han (UIC ECE)

• Professor Brian D. Ziebart (UIC CS)

• Professor Natalie Parde (UIC CS)

3 / 62



Overview

Side information and restricted
models



How do we define side information?
Placeholder

Definition
Side information about a dataset is anything known about the data but not additional data.
It can also be defined as structural information.
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Example 1: Convergence in probability
Placeholder

We want to upper bound the probability of the sum X =
∑n

i Xi of random variables
distributed as Xi ∼ Bernoulli(p) is greater than a.

• e.g. the probability that we get at least a = 10 heads from n = 20 coin tosses, i.e.
P(X > a).

What’s the best bound we can get?

• The Markov’s inequality gives us an upper bound of only E(X)
a on P(X > a).

• Chernoff bound gives us an exponentially decreasing upper bound.
— The Chernoff bound accounts for not just themean and variance of the data but also

the side information that we are dealing with a sum (or average) of these set of
numbers.
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Example 2: ML estimation of a probability matrix
Placeholder

• We have a conditional probability matrix P(Y = j|X = i)
— We compute and know its rank, which is side information.

• We sample counts Cij from this matrix.
— We let Cij be sparse relative to P(Y|X).

• We use a tempered EM algorithm to compute an ML estimate of Cij.
— It’s done as part of the PLSA algorithm that performs the factorization

P(Y = y|X = x) = P(Y = y|Z = z)P(Z = z|X = x)
— Rank takes the role of the (length of the) latent dimension Z

• The resulting P̂(Y|X) = P̂(Y|Z)P̂(Z|X) very closely resembles P(Y|X).
— Cij was sparse but the algorithm knew the rank through the latent dimension Z!
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PLSA inputs and outputs visualized
Placeholder

Cxy alone cannot give us P̂(Y|X), but combined with its rank information, it can!

Figure: True P(Y = y|X = x) Figure: Counts Cxy ∼ P(Y|X) Figure: Estimated P̂(Y|X)
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Induced Models

Our Methodology



Intuition - Woodblock Printing
Placeholder

• A technique for replicating a pattern on paper or textile
— Was in widespread use in China during 7th century (i.e.

Tang Dynasty)

• A merchant bought silk and wanted it block printed
— Woodblock was not fine enough fit the intricacies of

their pattern prototype
— They folded the silk after woodblock printing, and refined

it by hand.

• We propose a similar technique in training neural
models, where we fold the neural model to refine it using
side information at a restricted scale.

Figure:Woodblock
printing
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Side Information in Logistic Regression
Introductory example and proof of concept

• Suppose we are training a classifier Q(Y = 1 | x1, x2, x3)
• Assume we also know P(Yi = 1 | xi1) exactly for every
sample (i.e. Bayes optimal P)

P(Y = 1 | x1) =
Probability mass of blue polygon
Mass of both blue and red polygon

• P(y|x) depends only on the restricted feature set x1
where the complete feature set is x = (x1, x2, x3).
— To distinguish restricted and extended feature sets, we

use x = x1 and x = (x2, x3)
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Figure: Restricted model
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P is a marginal, how to use it?
Placeholder

• In general, P(y | x) is defined as a marginal of P (which
isn’t available in practice).

P(y|x) =
∑
x

P(y, x|x) =
∑
x

π(x|x) P(y|x, x)

— For now we assume we know P exactly (analytically
defined as a ratio of the polygon areas).

• Fundamental question: P performs classification at a
smaller scale than Q
— How can we utilize this restricted scale P(Y = 1 | x1)

while training the full featured Q(Y = 1 | x1, x2, x3)?
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Figure: Restricted model
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Existing Approaches / Related Works
Placeholder

• Our main baseline is data noising [1] which presents an approach to noise the
inputs/outputs of a language model using the restricted model P.

• We will defer the discussion about data noising to the next section (language
models)
— Takeaway for now: we are not the first ones to utilize a smaller model in the training

of a larger one!

• Our approach however, does solve some caveats of noising (to be discussed later).

Reference
[1] Data noising as smoothing in neural network language models. Xie et al. arXiv
preprint arXiv:1703.02573, 2017, 2017
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Bayes optimality assumption for P
Placeholder

• We assumed knowledge of Bayes Optimal P
• Doesn’t this assumption violate our definition of side
information?
— Yes it does!
— Side-information should not bemore data, which

P(Yi = 1 | xi1) is for now.
• We only use it for proof of concept, to check whether
ourmethodology has merit.
— We will remove this assumption later and replace P with

a proxy, constructed from existing data.
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Figure: Restricted model
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Learned Feature-Restricted Induced Model
a core component of the IMM methodology

• We propose that in order to learn from P(Yi = 1 | xi1), Q(Y = 1 | x1, x2, x3)must
“fold” and become Q(Yi = 1 | xi1), just like the silk cloth did, for refinements.

• How do we do this “folding”?
— Answer: simple marginalization, just as we do to (theoretically) get P from P.

• With x = x1 and x = (x2, x3), we have

Q(y|x) =
∑
x

π(x|x)︸ ︷︷ ︸
true context distribution

Q(y|x, x)
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Context Distribution
Placeholder

• Just like P, the true context distribution π is also a result of the marginalization of P

P(y|x) =
∑
x

P(y, x|x) =
∑
x

π(x|x) P(y|x, x)

— and therefore, not available in practice!

• We have ways to approximate it.
— Approximation depends on the kind of dataset.
— We will discuss individually for each case.
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Induced Model Matching
Placeholder

• At this stage, we are ready to introduce the idealized induced model matching
(IMM) risk ∑

x

π(x)︸︷︷︸
true context distribution

∑
y

P(y|x) log P(y|x)
Q(y|x)︸ ︷︷ ︸

D(P(·|x)∥Q(·|x))

— i.e., the average context-conditional KL divergence with the restricted context (x)
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Empirical Feature-Restricted Induced Models
a core component of the IMM methodology

The process of induction is heavily reliant on the type of dataset in use.

For continuous datasets
Since we understood π(x|x) can be approximated as a soft nearest-neighbor density
estimate f(x|x) = f(x2, x3|x1) ∝

∑n
t=1 δx2,t,x3,t(x2, x3)e

−α|x1,t−x1|, where 1/α is the
bandwidth of the kernel. Then,

Q(y|x) =
∫

f(x|x)Q(y|x, x)

≈
n∑

t=1

wt(x)∑n
t=1 wt(x)

Q(y|x, xt), where wt(x) = e−α|x1,t−x1|
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Empirical IMM Risk
Placeholder

The empirical IMM risk is then defined using P̂ and Q̂ (empirical versions of P and Q)

IMM(Q) =
∑
x

πn(x)
∑
y

P̂(y|x) log 1

Q̂(y|x)

In order to weave the above into an existing training pipeline, we expand the empirical
context distribution πn(x) and write IMM(Q) as a pass over the dataset:

IMM(Q) = −1

n

∑
t

[∑
y

P̂(y|xt) log Q̂(y|xt)
]

︸ ︷︷ ︸
IMMt(Q)

.
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Incorporating IMM into the training pipeline
Placeholder

x Restricted feature set
x Extended feature set
x = (x, x) Complete feature set

Table: Terminology
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Figure: For x = (x1, x2, x3),
x = x1 and x = (x2, x3)

Induced Model Matching

Cross-EntropyP (y|x) Q(y|x)
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Figure: General IMM implementation, using a proxy for P
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IMM as a regularizer
Placeholder

• IMM does not replace the main objective
— It’s added as a regularization term to the main objective to help SGD find the

parameters for the main objective.

• The main objective is still training the neural model on the full-featured task! The
problem can be written as

minCross-Entropy(Q) + λIMM-Risk(P, Q̂)

• Which later will become (after replacing P with a proxy)

minCross-Entropy(Q) + λIMM-Risk(P̂, Q̂)
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Performance on restricted task
Placeholder
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Figure: Performance of feature-restricted model on restricted task
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Experimental Results on Logistic Regression
Placeholder
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Figure: Performance of IMM in comparison to baselines

23 / 62



Experimental Results on Logistic Regression
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Experimental Results on Logistic Regression
Placeholder
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What if the target has lower quality than P?
Placeholder
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Figure: Performance of IMM with models of decaying quality
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Language Modeling

From Noising to IMM



P̂, a proxy for P
Placeholder

• In the case of Logistic Regression, we had obtained it using the
probability masses of the trapezoids.
— That is basically marginalizing the generating distribution P from

which we sample the data!

• Since we don’t have P, we simply cannot have P
— It’s time to remove assumption about any knowledge of P

• Fortunately, we can construct a proxy for P from data!
— Let’s talk about a proxy P̂ for P
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Figure: Restricted
model in Logistic
Regression
(earlier)
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P̂, a proxy for P
Placeholder

• A legitimate question: why would that even help? Does not the main loss also
use data?
— In restricted dimensionality, we often can construct more informative models than in

the full dimensionality space.
◦ In language modeling, we can construct the famed Kneser-Ney bigram!

— The knowledge of the larger model is not a superset of the knowledge of structurally
generated smaller models.
◦ Smaller models constructed using structured techniques still know something the larger

neural model does not know!
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The Kneser–Ney bigram
Placeholder

• A smoothed bigram that takes structural information into account (instead of just
occurence counts)

• This is a strength of Kneser–Ney that helped it remain unbeaten by LSTM RNN
based models for a long time. [2] [3]

References
[2] Chen, S. F., & Goodman, J. (1999). An empirical study of smoothing techniques for
language modeling. Computer Speech & Language, 13(4), 359–394.
[3] Chelba, C., Norouzi, M., & Bengio, S. (2017). N-gram language modeling using
recurrent neural network estimation. arXiv Preprint arXiv:1703. 10724.
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Learned Feature-Restricted Induced Model
a core component of the IMM methodology

• As discussed earlier, it’s obtained through marginalization.

Q(y|x) =
∑
x

π(x|x)︸ ︷︷ ︸
true context distribution

Q(y|x, x)

• In this case, we have x and x as the short and extended contexts.
• What we have obtained is an induced bigram of the full-featured n-gram language
model (a 36-gram LSTM RNN in our case)!
— n-gram = model that performs prediction using the complete context, i.e., x
— induced bigram = model that performs prediction solely on the basis of the most

recent token of the context, i.e., x
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Empirical Feature-Restricted Induced Models
a core component of the IMM methodology

Recall: the context distribution π(x|x) is also not available and its intuitive
interpretation (and hence the induction process) is depends on the type of dataset.

For discrete datasets
• In language modeling scenario, we interpret π(x|x) as a mechanism for filling in
the extended context for a given short context.

• If x = chicago fire department, then x = department and x = chicago fire
• Sampling from π(x|x) with x = departmentmight also give us
x′ = uic ece department or x′ = uchicago cs department in addition to
chicago fire department of the original context.
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Empirical Feature-Restricted Induced Models
a core component of the IMM methodology

• We then understand the empirical version of Q as doing a pass over the dataset,
and summing the outputs of only those contexts that share the same short
context as the original sample.

• We therefore have the following natural empirical version of Q

Q̂(y|x) ∝
∑
t

1{xt = x}Q(y|xt)

• Instead of iterating over the entire dataset, we can precompute a dictionary

longFromShort['department'] = [
['chicago', 'fire'], ['uic', 'ece'], ['uchicago', 'cs']

]

34 / 62



Induced Model Matching
Placeholder

• In Logistic Regression, our regularization term was

IMM-Risk( P︸︷︷︸
Bayes Optimal restricted model

, Q̂︸︷︷︸
classifier’s induced restricted model

)

• In Language Modeling, our regularization term will be

IMM-Risk( P̂︸︷︷︸
Kneser-Ney bigram

, Q̂︸︷︷︸
LSTM RNN’s induced bigram

)
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IMM in Language Modeling - Summary
Placeholder

Algorithm Sampled IMM with SGD for a Model Q with parametersW
Input: Tokenized data (xt, yt) for t = 1, 2, ..., n, k = sampling rate
Output: IMM-trained model Q
repeat

Q(yt|xt)← FeedForward(Q, xt, xt)
∇WCross-Entropy(Q)← BackPropagate(Q, Cross-Entropy(Q))
Q̂(yt|xt)← 0
for all x′ ∈ Sample(extend(xt), k) do

Q̂(yt|xt)← Q̂(yt|xt) + FeedForward(Q, xt, x′)
end for
IMMt(Q) = −

∑
y P̂(y|xt) log Q̂(y|xt)

∇WIMMt(Q)← BackPropagate(Q, IMMt(Q))
ApplyGradients(∇WCross-Entropy(Q) + λ∇WIMMt(Q))

until convergence
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Experimental results - LSTM RNN
measuring feature-restricted performance

Table: Restricted vs. Full Model on the Bigram Task (i.e., predicting the next word given only the
previous one.)

Dataset LSTM LSTM Kneser–Ney
w/o IMM w/ IMM

Train 260.16 → 237.55 92.19
Validation 339.24 → 302.30 199.28
Test 309.56 → 278.48 185.71
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Experimental results - LSTM RNN
measuring full-featured performance

Table: Perplexity values on an LSTM RNN based Language Model. The numbers on None and
KN Noising are from Xie et al and can be replicated using the original Stanford ML code. Like
the baseline, for each row, we report the best value we could reproduce across many restarts.

Dataset / Model Size Improvement Validation Test

PTB / 1500 None (only regular dropout) 81.6 77.5
KN Noising (reproducible) 76.7 73.9
IMM with KN Bigram 76.0 73.3
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Experimental results - BERT
measuring full-featured performance

Table: Results on the BERTBASE Language Model. The baseline numbers can be replicated using
the original BERT code by Google, as well as our provided repository. Matthew’s Correlation
Coefficient is used for CoLA and Accuracy for RTE. Like the baseline, reported numbers are
averages across multiple restarts.

BERTBASE + MLM +IMM

CoLA 52.1 ± 4.0 55.0± 3.0 60.0 ± 1.0
MRPC 88.9 ± 2.0 89 ± 1.0 90 ± 1.0
QNLI 90.5 ± 2.0 91.0± 2.0 93.5 ± 1.0
RTE 66± 3.0 68± 2.0 71 ± 1.0
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Computational Tractability

Making IMM more efficient



Sampling in the Main Loop
Placeholder

• Sampling k histories incurs a k-fold computational cost.
• In the thesis, we show that it’s possible to do the sampling implicitly in the main
loop, by decomposing the gradient:

−∇
∑
x

π(x)
∑
y

P(y|x) logQ(y|x)

= −
∑
x

π(x)
∑
y

P(y|x)
∑

x π(x|x)∇Q(y|x, x)
Q(y|x)

= −
∑
x

∑
x

π(x)π(x|x)
∑
y

P(y|x)Q(y|x, x)
Q(y|x)

∇ logQ(y|x, x)

• Constant-factor computational cost! (with caveats, e.g., maintaining Q)
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Analysis

Connections with noising
and reverse KD



Noising is single-sample IMM
Placeholder

• Recall the multiset (i.e. the “Python dictionary”) from which we sample extended
contexts, holding the short context (e.g. department) fixed.

• Since sampling is done uniformly, sampling a single different context is like
sampling a different output
— Think of it as an out of order pass over the data in the SGD
— Sampling a different output is precisely what noising (Xie et al) does.

• Single sample IMM is therefore noising!

∑
x

π(x)
∑
y

P(y|x) log 1

Q(y|x, x)︸ ︷︷ ︸
key difference
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Reverse Knowledge Distillation is single-sample IMM
Placeholder

∑
x

π(x)
∑
y

P(y|x) log 1

Q(y|x, x)︸ ︷︷ ︸
key difference

• Whereas noising does it implicitly, reverse KD explicitly adds this same objective to
training a strong student (Q) with a weak teacher (P) [4]

• Reverse KD does not exploit restriction being the nature of the weakness

Reference
[4] Yuan, L., Tay, F. E. H., Li, G., Wang, T., & Feng, J. (2020). Revisiting knowledge
distillation via label smoothing regularization. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 3903–3911.
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Noising and reverse-KD are upper bounds on IMM
Placeholder

Let’s consider the IMM Risk and its upper bound

−
∑
y

P̂(y|x) log (EX [Q(y|xt, X)])︸ ︷︷ ︸
IMM Risk

≤ −
∑
y

P̂(y|x)EX [log (Q(y|xt, X))]︸ ︷︷ ︸
Upper bound by Jensen’s

• Computing EX using a single random sample, we get a biased estimator of IMM
Risk but an unbiased estimator of the upper bound (i.e. noising (Xie et al)).

• The noising objective is therefore an upper bound on the IMM Risk.
• Minimizing an upper bound introduces risk for suboptimality.

In the thesis, we show a numerical counterexample where the global minimizer Q†

obtained by noising / reverse KD is something other than P!
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IMM in learning Markov
Decision Processes

Incorporating POMDPs knowl-
edge into MDPs



Markov Decision Processes (MDPs)
A quick review

Represented as a 5-tuple ⟨S,A, T,R, γ⟩.
• State space S : all possible states an agent can be in

• Action spaceA: all actions an agent can take

• Either can be discrete or continuous

A policy gradientmethod will train the policy such that we
maximize the reward when the agent traverses the
environment.

• To do so, it will use T, the transition function, R, the
Reward function and γ ∈ [0, 1], the discount factor. Figure: A simple grid MDP.
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Partially Observable MDPs (POMDPs)
A quick review

• A Partially Observable MDP (POMDP) is a
7-tuple ⟨S,A,O, T,R,O, γ⟩ with respective
elements detailed on the right

• Additional elements are the observation space
O and observation function O. The agent
receives observations of the current state
rather than the true state. Using past
observations, it builds a belief about the
underlying state.

Variable Description

S State space
A Action space
O Observation space
T Transition function
R Reward function
O Observation function
γ ∈ [0, 1] Discount factor
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POMDPs generalize MDPs
Placeholder

• POMDPs generalize MDPs
— Any MDP is also a POMDP where all states are fully observable
— Equivalently, the belief function of the corresponding POMDP collapses to a delta

function.

• MDPs can be solved as POMDPs
— A POMDP solver will simply treat an MDP like a POMDP

• Mixed Observability MDPs (MOMDPs), a special case of POMDPs
— Have a mixed set of observable and partially observable states.
— We use one toy example, however, our methodology applies to all POMDPs
— We do not use the term Mixed Observability thereafter.
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How POMDP policies are represented
Placeholder

• POMDP solutions, are called
conditional plans (close to, but not
the same as MDP “policies”) and
represented as sets of α vectors.

• One α vector per action, each of
length equal to the number of states.

• The inner product of an α vector with
the belief function gives us the utility
of that action.

Figure: Solution of a “crying baby” POMDP
which has just two states (hungry, fed) and just
two actions (feed, ignore).
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Toy example with POMDPs and MDPs
Placeholder

• A proof of concept, to transfer POMDP knowledge into an MDP.
— Mask one dimension of a simple MDP (to get a POMDP)
— Solve the POMDP using a POMDP solver (we use Fast Informed Bound [5]).
— Do IMM-aided training of original MDP, incorporating POMDP solution into it.

Reference
[5] Kochenderfer, Mykel J., Tim A. Wheeler, and Kyle H. Wray. Algorithms for decision
making. MIT press, 2022.
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Toy example with POMDPs and MDPs
Placeholder

• The reward distribution is shaped like a
mountain.

• The agent has to reach the center of the
mountain peak.
— MDP can look at both x and y coordinate.
— POMDP policy looks only at x and maintains a

belief over y

• POMDP policy obtained via FIB solver will be
incorporated into MDP policy training
(REINFORCE) using IMM
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Figure: Reward distribution of
“mountain climbing” MDP
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Experimental Results with REINFORCE
Placeholder
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Figure: Performance of REINFORCE with and without IMM
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What if we use a suboptimal target POMDP?
Placeholder
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Toy example with POMDPs and MDPs
Placeholder

• Our ultimate goal is not to solve masked MDPs as POMDPs
— Solving POMDPs is a well studied problem having a curse of dimensionality and a

curse of history [5]
— In practical applications a “POMDP solution” will be available to us.

Reference
[5] Kochenderfer, Mykel J., Tim A. Wheeler, and Kyle H. Wray. Algorithms for decision
making. MIT press, 2022.
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Where this can be practically useful
Merits of knowledge transfer from POMDP to MDP

• Masked Datasets: the lower dimensionality model was trained on (or
constructed from) a dataset with some features masked due to privacy reasons

• Continual/Lifelong Learning: the lower dimensionality model was trained on (or
constructed from) a dataset sampled from a previous policy having observations
of smaller dimensionality
— e.g., an old version of an autonomous vehicle with fewer sensors.

In either case, IMM gives us a method to transfer the knowledge of the restricted
dimensionality model into the training of a larger one!
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Summary
Placeholder

• This work contributes to a recent line of research that attempts to incorporate
knowledge from weak models/teachers into the learning of stronger
models/students.
— We make connections between existing techniques in the domain, notably data

noising and reverse knowledge distillation, that specifically try to use side-information
from restricted-context models.

• We introduce a new approach, IMM, and show that using the restriction is crucial
to have consistency in the limit (theoretically) and to achieve better performance
with finite samples (experimentally).
— While originally inspired by language modeling, we demonstrate the generally

applicability of the IMM approach.
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Publication
Placeholder

The thesis is based on one publication

Reference
Muneeb, U., & Ohannessian, M. I. (2024). Induced Model Matching: Restricted Models
Help Train Full-Featured Models. Advances in Neural Information Processing Systems
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Future Work
Placeholder

• IMM can potentially also aid physics informed neural networks in learning from
structured models (physics equations).

• IMM can potentially be of interest to increasing the context window of LLMs, by
letting shorter-window LLMs inform longer-window LLMs.

• IMM can have impact in more sophisticated RL examples and is of potential benefit
in the domain of curriculum learning as well as lifelong/continual learning.

59 / 62



Thank you!



Proof of Inconsistency

Noising and Reverse KD can be
asymptotically inconsistent



Asymptotic Optimum ̸= P
Placeholder

D(P∥Q)︸ ︷︷ ︸
Cross-Entropy

+λ
∑
x

π(x)
∑
y

P(y|x) log P(y|x)
Q(y|x)︸ ︷︷ ︸

Single-Sample IMM

.

• The single-sample IMM objective is no longer a proper
KL divergence, even with P.

• This in itself doesn’t mean the optimum cannot be P.
However, we can come up with a counterexample
where this risk becomes negative at a Q† ̸= P.

• This means its minimum is ̸= P. By convexity, it means
the overall objective shifts away from P.

Cross-Entropy(PǁQ) Single-Sample
IMM(Q)

QQ†P

0

< 0Q*

+
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